Phaeodactylum tricornutum photorespiration takes part in glycerol metabolism and is important for nitrogen-limited response
نویسندگان
چکیده
BACKGROUND Microalgae are potential sources of biofuels and high-value compounds. Mixotrophic conditions usually promote growth of microalgae. The pennate diatom Phaeodactylum tricornutum, with its short life cycle, completely sequenced genome, and ease of transformation, can be used as a model for studying carbon metabolism in microalgae. RESULTS We compared the growth rate of P. tricornutum (IOCAS-001) under different conditions and labeled the cells using [(13)C]glycerol (GL). The results revealed GL promoted the growth of P. tricornutum. Ser and Gly were synthesized via photorespiration. The (13)C enrichment of Ser and Gly under nitrogen-limited conditions was much higher compared to other amino acids, indicating the enhancement of photorespiration. Addition of sodium acetate decreased the growth rate of P. tricornutum under nitrogen-limited conditions. Our results indicated that the GL carbon backbone enters the Calvin cycle in the form of dihydroxyacetone phosphate (DHAP), producing xylulose 5-phosphate (X5P) with a GL2_3-generated carbon backbone distributed at X5P1_2 and ribose 5-phosphate (R5P) with GL1-derived carbon atoms at R5P1 and R5P2. Both R5P and X5P can be converted into ribulose-1,5-bisphosphate (RuBP). By oxygenation of RuBP carboxylase/oxygenase (Rubisco) and metabolism through photorespiration, these RuBPs generate Ser and Gly with GL1 or GL2-derived carbon atoms at position 1 and GL1 or GL3-derived carbon atoms at other positions, resulting in a low level of (13)C enrichment of Gly1 and Ser1. CONCLUSION Our results indicated different strains of P. tricornutum have different mechanisms for organic carbon metabolism. Photorespiration is involved in GL metabolism and is important for the nitrogen-limited response in P. tricornutum. CLASSIFICATION Metabolic flux analysis, microalgae.
منابع مشابه
Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum
Phosphorus (P) is an essential macronutrient for the survival of marine phytoplankton. In the present study, phytoplankton response to phosphorus limitation was studied by proteomic profiling in diatom Phaeodactylum tricornutum in both cellular and molecular levels. A total of 42 non-redundant proteins were identified, among which 8 proteins were found to be upregulated and 34 proteins were dow...
متن کاملIntegrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO2 Levels
Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean's primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses ...
متن کاملMolecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum
Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics...
متن کاملA Model for Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum Deduced from Comparative Whole Genome Analysis
BACKGROUND Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. METHODOLOGY/PRINCIPAL FINDINGS The whole genome sequence of the diatom Phaeodactylum tricornutum has recently been completed. We identified and annotate...
متن کاملExperimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum
BACKGROUND Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in pote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015